Manipulating files via mmap( ) has a handful of advantages over the
standard read( ) and write( ) system calls. Among them are:
Reading from and writing to a memory-mapped file avoids the
extraneous copy that occurs when using the read( ) or write( ) system
calls, where the data must be copied to and from a user-space buffer.
Aside from any potential page faults, reading from and writing to a memory-mapped file does not incur any system call or context switch
overhead. It is as simple as accessing memory.
When multiple processes map the same object into memory, the data is shared among all the processes. Read-only and shared writable
mappings are shared in their entirety; private writable mappings have
their not-yet-COW (copy-on-write) pages shared.
Seeking around the mapping involves trivial pointer manipulations. There is no need for the lseek( ) system call.
For these reasons, mmap( ) is a smart choice for many applications.
Disadvantages of mmap( )
There are a few points to keep in mind when using mmap( ):
Memory mappings are always an integer number of pages in size. Thus, the difference between the size of the backing file and an
integer number of pages is "wasted" as slack space. For small files, a
significant percentage of the mapping may be wasted. For example, with
4 KB pages, a 7 byte mapping wastes 4,089 bytes.
The memory mappings must fit into the process' address space. With a 32-bit address space, a very large number of various-sized mappings
can result in fragmentation of the address space, making it hard to
find large free contiguous regions. This problem, of course, is much
less apparent with a 64-bit address space.
There is overhead in creating and maintaining the memory mappings and associated data structures inside the kernel. This overhead is
generally obviated by the elimination of the double copy mentioned in
the previous section, particularly for larger and frequently accessed
files.
For these reasons, the benefits of mmap( ) are most greatly realized
when the mapped file is large (and thus any wasted space is a small
percentage of the total mapping), or when the total size of the mapped
file is evenly divisible by the page size (and thus there is no wasted
space).
In addition to other nice answers, a quote from Linux system programming written by Google's expert Robert Love: