iOS Hacker's Handbook

Category: Operating Systems
Author: Charlie Miller, Dion Blazakis, Dino Dai Zovi, Stefan Esser, Vincenzo Iozzo, Ralf-Philip Weinmann
This Year Stack Overflow 1
This Month Stack Overflow 1


by anonymous   2017-08-20

Security researchers Jean-Baptiste Bédrune and Jean Sigwald presented how to do this at Hack-in-the-box Amsterdam 2011.

Since then, Apple has released an iOS Security Whitepaper with more details about keys and algorithms, and Charlie Miller et al. have released the iOS Hacker’s Handbook, which covers some of the same ground in a how-to fashion. When iOS 10 first came out there were changes to the backup format which Apple did not publicize at first, but various people reverse-engineered the format changes.

Encrypted backups are great

The great thing about encrypted iPhone backups is that they contain things like WiFi passwords that aren’t in regular unencrypted backups. As discussed in the iOS Security Whitepaper, encrypted backups are considered more “secure,” so Apple considers it ok to include more sensitive information in them.

An important warning: obviously, decrypting your iOS device’s backup removes its encryption. To protect your privacy and security, you should only run these scripts on a machine with full-disk encryption. While it is possible for a security expert to write software that protects keys in memory, e.g. by using functions like VirtualLock() and SecureZeroMemory() among many other things, these Python scripts will store your encryption keys and passwords in strings to be garbage-collected by Python. This means your secret keys and passwords will live in RAM for a while, from whence they will leak into your swap file and onto your disk, where an adversary can recover them. This completely defeats the point of having an encrypted backup.

How to decrypt backups: in theory

The iOS Security Whitepaper explains the fundamental concepts of per-file keys, protection classes, protection class keys, and keybags better than I can. If you’re not already familiar with these, take a few minutes to read the relevant parts.

Now you know that every file in iOS is encrypted with its own random per-file encryption key, belongs to a protection class, and the per-file encryption keys are stored in the filesystem metadata, wrapped in the protection class key.

To decrypt:

  1. Decode the keybag stored in the BackupKeyBag entry of Manifest.plist. A high-level overview of this structure is given in the whitepaper. The iPhone Wiki describes the binary format: a 4-byte string type field, a 4-byte big-endian length field, and then the value itself.

    The important values are the PBKDF2 ITERations and SALT, the double protection salt DPSL and iteration count DPIC, and then for each protection CLS, the WPKY wrapped key.

  2. Using the backup password derive a 32-byte key using the correct PBKDF2 salt and number of iterations. First use a SHA256 round with DPSL and DPIC, then a SHA1 round with ITER and SALT.

    Unwrap each wrapped key according to RFC 3394.

  3. Decrypt the manifest database by stripping the initial four-byte length tag from the ManifestKey in Manifest.plist, and unwrapping it using the data protection class 4 NSFileProtectionNone. You now have a SQLite database with all file metadata.

  4. For each file of interest, get the class-encrypted per-file encryption key and protection class code by looking in the Files.file database column for a binary plist containing EncryptionKey and ProtectionClass entries. Strip the initial four-byte length tag from EncryptionKey before using.

    Then, derive the final decryption key by unwrapping it with the class key that was unwrapped with the backup password. Then decrypt the file using AES in CBC mode with a zero IV.

How to decrypt backups: in practice

In runnable source code form, here is how to decrypt the calculator preferences file from an encrypted iPhone backup:

#!/usr/bin/env python2.7
# coding: UTF-8

import argparse
import base64
import getpass
import hashlib
import os.path
import pprint
import random
import shutil
import sqlite3
import stat
import string
import sys
import tempfile

import Crypto.Cipher.AES #
import biplist
import fastpbkdf2

def main():
    ## Parse options
    parser = argparse.ArgumentParser()
    parser.add_argument('--backup-directory', dest='backup_directory',
    parser.add_argument('--password-pipe', dest='password_pipe',
Keeps password from being visible in system process list.
Typical use: --password-pipe=<(echo -n foo)
    parser.add_argument('--no-anonymize-output', dest='anonymize',
    parser.add_argument('--base64-passcode-key-pipe', dest='passcode_key_pipe',
Provide a previously derived passcode key to save time doing PBDKF2 when
    args = parser.parse_args()
    ANONYMIZE_OUTPUT = args.anonymize
        print 'Warning: All output keys are FAKE to protect your privacy'

    manifest_file = os.path.join(args.backup_directory, 'Manifest.plist')
    with open(manifest_file, 'rb') as infile:
        manifest_plist = biplist.readPlist(infile)
    keybag = Keybag(manifest_plist['BackupKeyBag'])
    # the actual keys are unknown, but the wrapped keys are known

    if args.password_pipe:
        password = readpipe(args.password_pipe)
        password = getpass.getpass('Backup password: ')

    if args.passcode_key_pipe:
        passcode_key = base64.decodestring(readpipe(args.passcode_key_pipe))
        passcode_key = None

    ## Unlock keybag with password
    if not keybag.unlockWithPasscode(password, passcode_key):
        raise Exception('Could not unlock keybag; bad password?')
    # now the keys are known too

    ## Decrypt metadata DB
    manifest_key = manifest_plist['ManifestKey'][4:]
    with open(os.path.join(args.backup_directory, 'Manifest.db'), 'r') as db:
        encrypted_db =

    key = keybag.unwrapKeyForClass(4, # NSFileProtectionNone
    decrypted_data = AESdecryptCBC(encrypted_db, key)

    temp_dir = tempfile.mkdtemp()
        # Does anyone know how to get Python’s SQLite module to open some
        # bytes in memory as a database?
        db_filename = os.path.join(temp_dir, 'db.sqlite3')
        with open(db_filename, 'w') as db_file:
        conn = sqlite3.connect(db_filename)
        c = conn.cursor()
            SELECT fileID, domain, relativePath, file
            FROM Files
            WHERE relativePath LIKE '%/Preferences/'
            ORDER BY relativePath""")
        results = c.fetchall()

    for item in results:
        fileID, domain, relativePath, file_bplist = item

        plist = biplist.readPlistFromString(file_bplist)
        file_data = plist['$objects'][plist['$top']['root'].integer]
        size = file_data['Size']

        protection_class = file_data['ProtectionClass']
        encryption_key = plist['$objects'][

        backup_filename = os.path.join(args.backup_directory,
                                       fileID[:2], fileID)
        with open(backup_filename, 'rb') as infile:
            data =
            key = keybag.unwrapKeyForClass(protection_class, encryption_key)
            # truncate to actual length, as encryption may introduce padding
            decrypted_data = AESdecryptCBC(data, key)[:size]

        print '== decrypted data:'
        print wrap(decrypted_data)

        print '== pretty-printed calculator preferences'

# this section is mostly copied from parts of iphone-dataprotection

import struct

KEYBAG_TYPES = ["System", "Backup", "Escrow", "OTA (icloud)"]
KEY_TYPES = ["AES", "Curve25519"]

    6: "kSecAttrAccessibleWhenUnlocked",
    7: "kSecAttrAccessibleAfterFirstUnlock",
    8: "kSecAttrAccessibleAlways",
    9: "kSecAttrAccessibleWhenUnlockedThisDeviceOnly",
    10: "kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly",
    11: "kSecAttrAccessibleAlwaysThisDeviceOnly"

class Keybag(object):
    def __init__(self, data):
        self.type = None
        self.uuid = None
        self.wrap = None
        self.deviceKey = None
        self.attrs = {}
        self.classKeys = {}
        self.KeyBagKeys = None #DATASIGN blob

    def parseBinaryBlob(self, data):
        currentClassKey = None

        for tag, data in loopTLVBlocks(data):
            if len(data) == 4:
                data = struct.unpack(">L", data)[0]
            if tag == "TYPE":
                self.type = data
                if self.type > 3:
                    print "FAIL: keybag type > 3 : %d" % self.type
            elif tag == "UUID" and self.uuid is None:
                self.uuid = data
            elif tag == "WRAP" and self.wrap is None:
                self.wrap = data
            elif tag == "UUID":
                if currentClassKey:
                    self.classKeys[currentClassKey["CLAS"]] = currentClassKey
                currentClassKey = {"UUID": data}
            elif tag in CLASSKEY_TAGS:
                currentClassKey[tag] = data
                self.attrs[tag] = data
        if currentClassKey:
            self.classKeys[currentClassKey["CLAS"]] = currentClassKey

    def unlockWithPasscode(self, passcode, passcode_key=None):
        if passcode_key is None:
            passcode1 = fastpbkdf2.pbkdf2_hmac('sha256', passcode,
                                            self.attrs["DPIC"], 32)
            passcode_key = fastpbkdf2.pbkdf2_hmac('sha1', passcode1,
                                                self.attrs["ITER"], 32)
        print '== Passcode key'
        print base64.encodestring(anonymize(passcode_key))
        for classkey in self.classKeys.values():
            if not classkey.has_key("WPKY"):
            k = classkey["WPKY"]
            if classkey["WRAP"] & WRAP_PASSCODE:
                k = AESUnwrap(passcode_key, classkey["WPKY"])
                if not k:
                    return False
                classkey["KEY"] = k
        return True

    def unwrapKeyForClass(self, protection_class, persistent_key):
        ck = self.classKeys[protection_class]["KEY"]
        if len(persistent_key) != 0x28:
            raise Exception("Invalid key length")
        return AESUnwrap(ck, persistent_key)

    def printClassKeys(self):
        print "== Keybag"
        print "Keybag type: %s keybag (%d)" % (KEYBAG_TYPES[self.type], self.type)
        print "Keybag version: %d" % self.attrs["VERS"]
        print "Keybag UUID: %s" % anonymize(self.uuid.encode("hex"))
        print "-"*209
        print "".join(["Class".ljust(53),
                      "Public key"])
        print "-"*208
        for k, ck in self.classKeys.items():
            if k == 6: print ""
            print "".join(
                 anonymize(ck.get("KEY", "").encode("hex")).ljust(65),
                 anonymize(ck.get("WPKY", "").encode("hex")).ljust(65),
                 ck.get("PBKY", "").encode("hex")])

def loopTLVBlocks(blob):
    i = 0
    while i + 8 <= len(blob):
        tag = blob[i:i+4]
        length = struct.unpack(">L",blob[i+4:i+8])[0]
        data = blob[i+8:i+8+length]
        yield (tag,data)
        i += 8 + length

def unpack64bit(s):
    return struct.unpack(">Q",s)[0]
def pack64bit(s):
    return struct.pack(">Q",s)

def AESUnwrap(kek, wrapped):
    C = []
    for i in xrange(len(wrapped)/8):
    n = len(C) - 1
    R = [0] * (n+1)
    A = C[0]

    for i in xrange(1,n+1):
        R[i] = C[i]

    for j in reversed(xrange(0,6)):
        for i in reversed(xrange(1,n+1)):
            todec = pack64bit(A ^ (n*j+i))
            todec += pack64bit(R[i])
            B =
            A = unpack64bit(B[:8])
            R[i] = unpack64bit(B[8:])

    if A != 0xa6a6a6a6a6a6a6a6:
        return None
    res = "".join(map(pack64bit, R[1:]))
    return res

ZEROIV = "\x00"*16
def AESdecryptCBC(data, key, iv=ZEROIV, padding=False):
    if len(data) % 16:
        print "AESdecryptCBC: data length not /16, truncating"
        data = data[0:(len(data)/16) * 16]
    data =, Crypto.Cipher.AES.MODE_CBC, iv).decrypt(data)
    if padding:
        return removePadding(16, data)
    return data

# here are some utility functions, one making sure I don’t leak my
# secret keys when posting the output on Stack Exchange

anon_random = random.Random(0)
memo = {}
def anonymize(s):
    global anon_random, memo
        if s in memo:
            return memo[s]
        possible_alphabets = [
            string.digits + 'abcdef',
            "".join(chr(x) for x in range(0, 256)),
        for a in possible_alphabets:
            if all(c in a for c in s):
                alphabet = a
        ret = "".join([anon_random.choice(alphabet) for i in range(len(s))])
        memo[s] = ret
        return ret
        return s

def wrap(s, width=78):
    "Return a width-wrapped repr(s)-like string without breaking on \’s"
    s = repr(s)
    quote = s[0]
    s = s[1:-1]
    ret = []
    while len(s):
        i = s.rfind('\\', 0, width)
        if i <= width - 4: # "\x??" is four characters
            i = width
        s = s[i:]
    return '\n'.join("%s%s%s" % (quote, line ,quote) for line in ret)

def readpipe(path):
    if stat.S_ISFIFO(os.stat(path).st_mode):
        with open(path, 'rb') as pipe:
        raise Exception("Not a pipe: {!r}".format(path))

if __name__ == '__main__':

Which then prints this output:

Warning: All output keys are FAKE to protect your privacy
== Keybag
Keybag type: Backup keybag (1)
Keybag version: 3
Keybag UUID: dc6486c479e84c94efce4bea7169ef7d
Class                                                WRAP Type       Key                                                              WPKY                                                             Public key
NSFileProtectionComplete                             2    AES                                                                         4c80b6da07d35d393fc7158e18b8d8f9979694329a71ceedee86b4cde9f97afec197ad3b13c5d12b
NSFileProtectionCompleteUnlessOpen                   2    AES                                                                         09e8a0a9965f00f213ce06143a52801f35bde2af0ad54972769845d480b5043f545fa9b66a0353a6
NSFileProtectionCompleteUntilFirstUserAuthentication 2    AES                                                                         e966b6a0742878ce747cec3fa1bf6a53b0d811ad4f1d6147cd28a5d400a8ffe0bbabea5839025cb5
NSFileProtectionNone                                 2    AES                                                                         902f46847302816561e7df57b64beea6fa11b0068779a65f4c651dbe7a1630f323682ff26ae7e577
NSFileProtectionRecovery?                            3    AES                                                                         a3935fed024cd9bc11d0300d522af8e89accfbe389d7c69dca02841df46c0a24d0067dba2f696072

kSecAttrAccessibleWhenUnlocked                       2    AES                                                                         09a1856c7e97a51a9c2ecedac8c3c7c7c10e7efa931decb64169ee61cb07a0efb115050fd1e33af1
kSecAttrAccessibleAfterFirstUnlock                   2    AES                                                                         0509d215f2f574efa2f192efc53c460201168b26a175f066b5347fc48bc76c637e27a730b904ca82
kSecAttrAccessibleAlways                             2    AES                                                                         b7ac3c4f1e04896144ce90c4583e26489a86a6cc45a2b692a5767b5a04b0907e081daba009fdbb3c
kSecAttrAccessibleWhenUnlockedThisDeviceOnly         3    AES                                                                         417526e67b82e7c6c633f9063120a299b84e57a8ffee97b34020a2caf6e751ec5750053833ab4d45
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly     3    AES                                                                         b0e17b0cf7111c6e716cd0272de5684834798431c1b34bab8d1a1b5aba3d38a3a42c859026f81ccc
kSecAttrAccessibleAlwaysThisDeviceOnly               3    AES                                                                         9b3bdc59ae1d85703aa7f75d49bdc600bf57ba4a458b20a003a10f6e36525fb6648ba70e6602d8b2

== Passcode key

== Keybag
Keybag type: Backup keybag (1)
Keybag version: 3
Keybag UUID: dc6486c479e84c94efce4bea7169ef7d
Class                                                WRAP Type       Key                                                              WPKY                                                             Public key
NSFileProtectionComplete                             2    AES        64e8fc94a7b670b0a9c4a385ff395fe9ba5ee5b0d9f5a5c9f0202ef7fdcb386f 4c80b6da07d35d393fc7158e18b8d8f9979694329a71ceedee86b4cde9f97afec197ad3b13c5d12b
NSFileProtectionCompleteUnlessOpen                   2    AES        22a218c9c446fbf88f3ccdc2ae95f869c308faaa7b3e4fe17b78cbf2eeaf4ec9 09e8a0a9965f00f213ce06143a52801f35bde2af0ad54972769845d480b5043f545fa9b66a0353a6
NSFileProtectionCompleteUntilFirstUserAuthentication 2    AES        1004c6ca6e07d2b507809503180edf5efc4a9640227ac0d08baf5918d34b44ef e966b6a0742878ce747cec3fa1bf6a53b0d811ad4f1d6147cd28a5d400a8ffe0bbabea5839025cb5
NSFileProtectionNone                                 2    AES        2e809a0cd1a73725a788d5d1657d8fd150b0e360460cb5d105eca9c60c365152 902f46847302816561e7df57b64beea6fa11b0068779a65f4c651dbe7a1630f323682ff26ae7e577
NSFileProtectionRecovery?                            3    AES        9a078d710dcd4a1d5f70ea4062822ea3e9f7ea034233e7e290e06cf0d80c19ca a3935fed024cd9bc11d0300d522af8e89accfbe389d7c69dca02841df46c0a24d0067dba2f696072

kSecAttrAccessibleWhenUnlocked                       2    AES        606e5328816af66736a69dfe5097305cf1e0b06d6eb92569f48e5acac3f294a4 09a1856c7e97a51a9c2ecedac8c3c7c7c10e7efa931decb64169ee61cb07a0efb115050fd1e33af1
kSecAttrAccessibleAfterFirstUnlock                   2    AES        6a4b5292661bac882338d5ebb51fd6de585befb4ef5f8ffda209be8ba3af1b96 0509d215f2f574efa2f192efc53c460201168b26a175f066b5347fc48bc76c637e27a730b904ca82
kSecAttrAccessibleAlways                             2    AES        c0ed717947ce8d1de2dde893b6026e9ee1958771d7a7282dd2116f84312c2dd2 b7ac3c4f1e04896144ce90c4583e26489a86a6cc45a2b692a5767b5a04b0907e081daba009fdbb3c
kSecAttrAccessibleWhenUnlockedThisDeviceOnly         3    AES        80d8c7be8d5103d437f8519356c3eb7e562c687a5e656cfd747532f71668ff99 417526e67b82e7c6c633f9063120a299b84e57a8ffee97b34020a2caf6e751ec5750053833ab4d45
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly     3    AES        a875a15e3ff901351c5306019e3b30ed123e6c66c949bdaa91fb4b9a69a3811e b0e17b0cf7111c6e716cd0272de5684834798431c1b34bab8d1a1b5aba3d38a3a42c859026f81ccc
kSecAttrAccessibleAlwaysThisDeviceOnly               3    AES        1e7756695d337e0b06c764734a9ef8148af20dcc7a636ccfea8b2eb96a9e9373 9b3bdc59ae1d85703aa7f75d49bdc600bf57ba4a458b20a003a10f6e36525fb6648ba70e6602d8b2

== decrypted data:

== pretty-printed calculator preferences
{'DisplayValue': '3.14159265358979323846264338327950288',
 'MemoryValue': '2.718281828459045235360287471352662',
 'TrigonometricModeKey': False}

Extra credit

The iphone-dataprotection code posted by Bédrune and Sigwald can decrypt the keychain from a backup, including fun things like saved wifi and website passwords:

$ python iphone-dataprotection/python_scripts/ ...

|                              Passwords                                             |
|Service           |Account          |Data           |Access group  |Protection class|
|AirPort           |Ed’s Coffee Shop |<3FrenchRoast  |apple         |AfterFirstUnlock|

That code no longer works on backups from phones using the latest iOS, but not all that much has changed ... leave a comment if you’d like me to update the above code to dump out saved passwords as well ;P